

A Computer Aided Process Engineering Tool for the Study
of Organizational Processes

Brenda L. Flores Ríos and Ana I. Martínez García

Departamento de Ciencias de la Computación. CICESE
Carretera Tijuana-Ensenada Km. 107 Ensenada, B.C. México

{bflores,martinea}@cicese.mx

Abstract. There exist many kinds of tools for the studying of organizational
processes (i.e. software process), but they do not follow the process engineering
life cycle. Thus, Computer Aided Process Engineering (CAPE) is a term
introduced to define and group the tools, which follow all the phases of a
process engineering study. The importance of CAPE type of tools is discussed
and a prototype of this kind named CAPETool is described. CAPETool follows
and provides support to all the phases (capture, modeling, evaluation, analysis
and redesign through IT) using a standard methodology. The tool uses a
definition of a base model for a descriptive and formal representation of the
processes; this makes them reusable and platform independent. The processes
are modeled in a process modeling structured technique named RAD (based on
roles, their interactions and activities), which provides most of the information
needed in a process model representation. The RADs base model is defined in
eXtensible Markup Language (XML) and double linked lists are used for
keeping the RADs’ roles interactions. To have reusable models is a very
important feature, as we can generate from static process models, such as
RADs, their corresponding dynamic models (i.e. enactment, simulation, etc.)

1. Introduction

Organizational processes (software development, project management, business, etc.)
can be defined as a group of logically related tasks that use the resources of an
organization to get well defined results in support of its objectives [1]. The structured
definition of processes provides advantages in its description, analysis modeling and
support. Some of these advantages are to be able to represent the agents (a person,
group or a system) that perform a process element, the activities that are carried out,
their flow and interactions between roles (group of activities that together achieve an
aim), the units of information produced and manipulated by the process and mainly to
be able to determine the possible areas for improvement, if they exist. Process
Engineering is a field that can be used to study organizational processes. It is defined
by Kawalek [2] as the collection of techniques for the analysis, design and evolution
of organizational processes based on the use of Process Modeling, which is defined as
the generic name given to the collection of techniques for modeling systems behavior.
Process Modeling emerged as a result of research focused on the study of the software
development life cycle and the software process itself. Its aim is to provide support in

reaching the objectives of an organization by providing the means for representing,
analyzing and understanding their current processes in order to find out possible areas
for improvement and determine the process support needed.
In the area of Software Engineering, improving the quality and productivity of
software development is a key point. Hence, theories, methods and tools have been
introduced and developed to support and improve the process. Computer Aided
Software Engineering (CASE) tools are one of the technologies introduced to improve
the systems' production time, as they guide the Software Engineer through the life
cycle of the software process facilitating the development of its phases.
Nowadays, there is also a great variety of tools for Process Engineering [3], some of
them capture the description of the process using graphical representations, others use
more dynamic Information Technology (IT) to show the behavior of a process and
generate some reports for the study in progress. However, in the literature it is not
possible to find Process Engineering tools that, as the CASE tools in Software
Engineering, integrate all the methodological steps needed to support all the phases in
a study of an organizational process using Process Engineering [3]. From these facts,
emerges the need of these kinds of tools with an integrated environment that
contemplates both the static and dynamic view and analysis of the process.

Fig. 1. General design of the tool with the base model that is used in the processes'
representation.

other
 services

Organizational
Process

role1
...

Agents

* scheme of D.B.
* system for the
decision making,
etc.

modeller

user's
interfaces

Process
modelling
in RADs

Process
enactment

Generating the
structure of the

Base Model

Base
Model in

XML

Reading for the
graphical

representation

simulation Discrete event
simulation

In this work, the Computer Aided Process Engineering (CAPE) term is introduced to
define the tools that provide support to all the steps involved in a complete Process
Engineering study of an organizational process. Also a prototype of these kinds of
tools, named CAPETool, is illustrated. CAPETool provides support through the
phases of capture, modeling, evaluation, analysis, redesign of processes and the
implementation of process support with IT. Thus, a CAPE tool can be defined as that
which gives support to the study of processes, by providing the means for the analysis
and visualization of the different perspectives (functional, informational, behavioral
and organizational [4]) that characterize a process. The correct use of these types of
tools, as a support to each step of a process study, will provide to the members of the
engineering team involved in the study means for a better communication and support
through the analysis and understanding of the organizational processes.
An important point in the design of CAPETool, as it is shown in Fig. 1, is the
reusability of the static process models' representation, that can be used as a basis for
the generation of dynamic models (i.e. simulation models, enactment, etc.) which will
provide support to the process using IT. Inside the dotted box in Figure 1, the base
model represents, in terms of a process, what is intended to model, analyze or
coordinate within the organizations, in a descriptive form. In this work the eXtensible
Markup Language (XML) [5] is used for the formal representation of the process
models. The Process Engineer could use the base model of the process to generate the
graphical representations of Role Activity Diagrams (RADs), simulations,
coordination systems (enactment), etc.
In the following section the CAPETool prototype requirements are briefly described
together with the results obtained of using the process base model in XML with the
characteristics of an organizational process.

2. CAPETool

Nowadays organizations make an appropriate use of the power of IT to redesign their
processes [7]. Thus, doing that an organization improves its performance and
competitivity keeping the balance and a level of coordination between its main
components: staff (social aspect), methodology (focus on processes and software) and
tools (technical aspect). We present the development of a support tool for the study of
organizational processes, which provides some means, which contribute in the
improvement of processes.
The process group at CICESE has named the computer aided tool that supports all the
phases of a Process Engineering study CAPETool. According to this, CAPETool must
be developed under the following requirements:
(a) The tool must provide support for the process capture, description and analysis.

Based on the capture and description of an organization's process it must be
possible to perform an analysis to determine key areas for improvement or
redesign.

(b) It must provide the means to document and analyze the impact of socio-technical
changes to the process using process models simulation.

(c) It must facilitate the following and managing of the process engineering study of
an organization. CAPETool must be flexible enough to incorporate or interface
tools or add modules according to the needs of a particular organization.

(d) The tool must provide support to a variety of diagrammatic techniques for the
modeling of processes. The process model must be represented in a base model,
reusable and independent of the platform.

(e) It must have and support a process engineering methodological structure, to work
as a guide in the study of organizational processes.

Fig. 2. Use cases of CAPETool showing its structure and relations. The use cases are oriented
to the activities that the Process Engineer and the Client follow when performing an
organizational process study.

formal and informal
use of tools

 and techniques

Developing a vision of
 the improved process

Evaluating the diagrams to
validate and verify the data

Specification
of the process

Proposals

Process
elicitation

Validation

Defining
agents

Input : knowledge,
experience, description of the

problem, scope, etc.

Process

Defining
documents

Establishing
technical and
social aspects

non explict or
lack of

information

Diagramming
techniques

Physical
document

flow

Objetives
diagrams

Role
cardinality

satisfactory
 result

exist deficiencies in the model

modifying diagrams

Client

Business
Process
Engineer

Manuals, observation,
interviews,

questionnaires, etc,

RAD

IDEF, etc.

Support

Data
dictionary

User
catalogue

changing to diagrams or aspects of the capture

Analysis

Redesign

The use case diagram is oriented to the activities that the Process Engineer and the
Client have to follow to perform a process study. Fig. 2 shows a use case diagram of
CAPETool. The key activities are: the capture of the socio-technical issues,
documents and agents; the modeling of activities using a variety of diagrammatic
techniques (IDEF [6], RADs [10], physical document flow diagrams, etc.) supported
by the users catalog and data dictionary; the process models' evaluation to verify and
validate their content (information); static and dynamic process analysis; redesign (a
view of the process TO-BE); supporting the process with IT (simulation [7], Data
Bases, Web, etc.) and finally the generation of reports with the general and main
features of the process.
The focus of this work is on the representation of:
1. The generic base of the prototype of CAPETool.
2. The base model of the process represented in XML.
3. The mapping of a RAD model to a data structure to be represented in a base

model that is reusable and platform independent.
In the next section we provide a more detailed explanation of these three points.

3. Process Base Model

The XML document defines the processes in terms of labels based on the concept of
roles, activities and interactions (RADs). A parser implemented in Java can perform
the reading of the process base model from the XML document. The parser translates
the models' behavior in terms of the reading of data contained in the process base
model structure (using labels that we defined), and then the information is introduced
into CAPETool to perform the graphical representation of the model (in RADs). A
simple example of a process base model of a real case study in the health sector
(family health care process) is shown in Fig. 3, illustrating some of the XML labels'
definition, proposed to model a process in RADs and to get the information needed
from them.

<?xml version="1.0" ?>
<!DOCTYPE rol (View Source for full doctype...)>
<rad>
 <role name=”Waiting turn in reception”>
 <agent who=”a”>Pacient (eventual, with an appointment or
exp)</agent>
 <act id=”a1”>

<nom> Handing in the appointment card</nom>
<coordenate> <x>250</x> <y>100</y> </coordenate>
<interaction which=”1” type="E">b </interaction>

 </act>
 ...
 </role>
...
</rad>

Fig. 3. Definition of a XML document of a process base model that shows an example of how
to represent a role (in RADs) and its activities.

XML makes possible to define our own Document Type Definition (DTD) by
defining our labels and establishing the structure of the document needed. Hence, we
defined a DTD for the process base model. In this DTD we specified the labels
according to the elements that characterize a process modeled with RADs (Fig 3).
The DTD is a file that contains the formal definition of a general RAD model; this
defines the labels' names that can be used, where can they appear and how they relate
to each other.

3.1 Process Modeling with Role Activity Diagrams (RADs)

RAD is a structured technique, where the description of the processes is given in
terms of activities, roles and their interactions [10]. This technique represents most of
the main characteristics of a process (objectives, roles, decisions, etc.)[6,9]. Thus, we
selected it as the base modeling static technique to be used for the generation of the
dynamic models. The graphical notation and a brief description of the RAD elements
are shown in Fig. 4.

Fig. 4. A brief description of the RAD elements (activities, interactions, state labels, alternative
and parallel paths.)

Roles are represented by a rectangle with a label at the top, specifying the role's name
and the agent responsible to perform it. Inside the role the activities are drawn as
small squares with its description at the right, the interactions between roles are
represented by bold lines, which connect from the role activity that started the
interaction to the activity of the role to which it is communicating. The vertical lines
that connect the RAD elements are called state lines, which show the transition
(states) between the elements. In the next section, we explain the details of the storage
and representation of the process base model elements (RAD), extracted from a XML
document, as a data structure in Java

Activity

Interaction

State
level

State level

Activity

Interaction

Alternative paths
depending on
the satisfaction
of the condition

Condition Condition

State level

Parallel paths, all should be
carried aout before the next
activity can start, the order is
undefined

Start
Role

A Role

Another Role

Two or more roles
interacting

A t rans i t i on f rom one
activity to the next

3.2 Logical Representation of the Process Base Model to a Data Structure

Double linked lists are the data structures used in the storage of the information read
from the process base model represented in a XML document. These structures are
read into CAPETool, and then the RAD model is constructed graphically and the
main features of the process can be observed [11].
The double linked lists are easy to use. They are very flexible with the operations of
insertion, deletion and access to the elements defined for the process base model and
in the representation of the variety of diagrammatic techniques.

Fig. 5. A RAD with two activities and its mapping to a linked list. The two activities are
represented as two nodes linked by a pointer.

Fig. 6a. A RAD where a role has an activity
linked to other roles and activities within
itself.

Fig. 6b. Representation of the RAD in Fig.
5a as a double linked list.

Let us consider the case of a role with two activities (Fig. 5). This could be stored in a
list with two elements. However, it must be possible to perform more operations than
those allowed by a simple list. Thus, in a more complex case, such as a RAD with an
activity with four links (Fig. 6a), it is necessary to have the reference to all the linked
elements, as it is illustrated in Fig. 6b. Hence, a double linked list provides all the
possible operations needed in the RADs representation and manipulation in the
CAPETool environment.

This small example illustrates the complexity of the data structures used in the process
models’ representation using RADs. CAPETool is a generic prototype that is intended
to work with a great variety of process models.

RAD
agent-role

RAD
agent-role RAD

agent-roleact

act

act

act

act

act

act act

actact

act

act

act

act

act act

double linked list

RAD
agent-role

act

act

Linked list

act

act

4. CAPETool Implementation

The implementation of the prototype was performed in Java [12]. In the development
of the Graphical User Interface (GUI) we used the Abstract Window Toolkit (AWT)
and the elements of Swing in Java2. Therefore the implementation of CAPETool has
several forms to input (through menus, bottons, etc) and output information (by
writing reports with the main features of the process base model, displaying the
diagrams for the modeling techniques, etc.). The prototype is platform independent
and can be executed in any operating system that supports Java (i.e. Windows and
Linux). Fig. 7 shows the main screen of CAPETool, where the options are the
corresponding to those established in the definition and requirements of tools of
CAPE type. The options represent a requirement (capture, modeling, evaluation,
analysis, redesign and support) as described in the use case diagram (Fig. 2).

Fig. 7. Main screen of CAPETool. The menu offers the options established in the use case
diagram (Fig. 2).

Fig. 8. RAD editor. Representation of a RAD after reading the process base model from the
XML document.

At this stage one of the main features of the tool is the modeling and representation of
the process using RADs; thus, the tool has integrated a RAD editor (Fig. 8), which is
used to read the process base model. Its functionality has been tested with a real case
process from a case study in the health sector (Fig. 3) and some other examples.

The editor presents information about the process model through three layers:
Code. - Shows the structure of the process base model. Graphic- Performs the reading
of the process base model and then draws the RAD (Fig. 9). Report. - One can have
the process model reports (Fig 10) and then copy and paste it into any word processor.

Fig. 9. The RAD process model generated
from the process base model defined in a
XML document built in the RAD editor.

Fig. 10. Report generated with the features of
the process based on the process model on
RADs.

The report generated (Fig. 10) with the process main features, can be taken to any text
editor or word processor (i.e. Word for Windows or Staroffice for Linux). Therefore,
the generated information could be used not only within CAPETool, but also in any
other tool to generate documents with information and formats that an organization
considers relevant.
Through the implementation of the CAPETool prototype, we present the platform
independent process base model structure in XML that is proposed and how the
graphical RAD is generated from this. However we recognize that mapping the
structure of all possible RADs and the representation of their graphical characteristics
requires a complex DTD. The base model is still under development adding some
extra features of RADs (i.e. recurrence of some elements such as alternative or
parallel paths, within themselves, etc.).

5. Conclusions

In this work we have introduced CAPE as a term to identify the different computer
aided tools that follow the phases of process engineering. We emphasized the
importance of having a methodological approach to the study of organizational
processes based on process improvement.
We also remarked the relevance of using an integrated tool that supports a process
study by means of process engineering using a CAPE approach such as the prototype
tool that we illustrate CAPETool. With the CAPE type of tools, support to all the
steps on a process engineering study is provided without the need to change and use

different environment tools that do not facilitate the reusability of models (i.e. to
generate enactment or simulation models).
We also presented important implementation features of CAPETool that facilitate the
reusability of process models. Features such as the RAD process base model in XML
and the simultaneous generation of a report with the main aspects of the process
modeled in RADs.
The example use through the illustration of CAPETool is a case study developed in
the health sector. In particular the family health care process of the Family Medical
Unit 32 in Ensenada, Baja California, Mexico.
Our main contributions with this work are: the CAPE approach to building tools for
supporting the study of organizational processes, the definition of a generic process
base model (in XML) that permits the reusability and portability of process models
and a CAPETool, which uses a process base model for the formal and graphical
representation of processes.
Our aim is to continue developing the process base model of CAPETool and the tool
itself adding the features for the dynamic analysis of processes and continue using it
in real case studies to evaluate its usability and the relevance of these types of tools.

References

1. Gladwin, B. y Tummy, K., Modelling Business Processes with Simulation Tools,
Proceedings of the 1994 Winter Simulation Conference, 114-121. 1994.

2. Kawalek Peter. A Method for Designing the Software Support for Coordination. Ph.D.
thesis. University of Manchester. England. 1997.

3. Kettinger William, Teng James T. and Guha Subashish. Business Process Change: A
Study of Methodologies, Techniques and Tools. Volume 21. Number 1. USA. 1997.

4. Curtis B., Kellner M and Over J. Process Modelling. Communications of the ACM. Vol.
35. No. 9. 75-89. 1992.

5. McLaughlin, Brett. Java and XML. O’Reilly & Associates. Inc. USA. 2000.
6. Ould, Martyn A. Business Processes: Modelling and Analysis for Reengineering and

Improvement”. John Wiley and Sons Inc. England. 1995.
7. Davenport T. H. Process Innovation: Reengineering Work Through Information

Technology. Harvard Business Press, Boston. 1993.
8. Hunt V. Daniel. Process Mapping. How to reengineer your business processes. John Wiley

and Sons Inc. USA. 1996.
9. McLaughlin, Brett. Java and XML. O’Reilly & Associates. Inc. USA. 2000.
10. Miers, D. Use of Tools and Technology Within a BPR Initiative. In Business Processes

Reengineering. 1996 edited by Coulson-Thomas Collin, Kogan.142-165. 1996.
11. Weiss Mark A. Estructuras de datos en Java. Addison Wesley. España. 2000
12. Geary David M. Graphic Java 2. Sun Microsystems Press. USA. 1999.

Acknowledgments

This work was partially supported by CONACYT under grant I33046-A and scholarship 143001 provided
to the first author. We would also like to thank Dr. Fernando Rojas from CCMC-UNAM for helpful
discussions and comments. We thank the staff of the Family Medical Unit 32 in Ensenada, Baja California,
Mexico for their participation during the development of the case study.

